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DS542 Gardos – Understanding Deep Learning, Other Content Cited 1

A survey in three papers.

https://udlbook.github.io/udlbook/


Reminders

• Mid-project check-in
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Topics

• Transformers Recap
• ImageGPT
• Vision Transformer (ViT)
• CLIP – Contrastive Learning w/ Image Pre-Training
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Transformers Recap
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Transformer Layer -- Complete
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Transform Layer

Calculated column-wise

LayerNorm



Encoder Pre-Training

• A small percentage of input embedding replaced with a generic <mask> 
token
• Predict missing token from output embeddings
• Added linear layer and softmax to generate probabilities over vocabulary
• Trained on BooksCorpus (800M words) and English Wikipedia (2.5B words)
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XT

Special <cls> token 
used for aggregate 
sequence 
representation for 
classification



Decoder: Text Generation (Generative AI)
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• Feed the output back into input



Encoder Decoder Model
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• The transformer layer in 
the decoder of the 
encoder-decoder model 
has an extra stage
• Attends to the input of 

the encoder with cross 
attention using Keys and 
Values from the output 
of the encoder



Cross-Attention
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Keys and Values come from the last stage of 
the encoder



NLP Preprocessing Pipeline
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Tokenizer Learned
Embeddings Transformer

Preprocessing: Tokenization and Embedding

Transformers don’t work on character string directly, but rather on vectors.

The character strings must be converted to vectors

<Some text string>



Learned Embeddings

• After the tokenizer, you have an updated ”vocabulary” indexed by token ID
• Next step is to translate the token into an embedding vector
• Translation is done via a linear layer which is typically learned with the rest of the 

transformer model

• Special layer definition, likely to exploit sparsity of input

11

Tokenizer
Learned

Embeddings:
Linear Layer

Transformer
<Some text string>

self.embedding = nn.Embedding(vocab_size, embedding_dim)



Embeddings Output

”One hot encoding”
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N 𝒱

In this example, we are 
assuming a token is simply a 
complete word

• Typical embedding size, D, is 1024
• Typical vocabulary size, 𝒱  , is 30,000
• So 30M parameters just for this matrix!



History of Transformers
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ImageNet History – Top-1 Error

14Based on Papers with Code



ImageNet Top-1 Accuracy
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https://paperswithcode.com/sota/image-classification-on-imagenet 

https://paperswithcode.com/sota/image-classification-on-imagenet
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Image GPT – June 2020

• Train GPT-2 scale sequence Transformer to auto-regressively predict 
pixels, w/o 2D input structure
• Use GPT-2 with only minor changes
• ImageNet Top-1 72% accuracy (not great), trained on ImageNet and 

web images
• Primary objective is to explore the representation accuracy of internal 

features
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https://openai.com/research/image-gpt
https://github.com/openai/image-gpt (deprecated)
https://huggingface.co/docs/transformers/model_doc/imagegpt  

M. Chen et al., “Generative Pretraining from Pixels,” OpenAI, Technical Report, 
Jun. 2020.

https://openai.com/research/image-gpt
https://github.com/openai/image-gpt
https://huggingface.co/docs/transformers/model_doc/imagegpt


Image GPT – Inputs

• Reduced resolution to reduce context size:
 32×32, 48×48 or 64×64
• Also reduced color palette from 3×8 = 24 bit 

(16M colors) to a 9-bit (512 colors) color palette 
by clustering (R, G, B) pixels with 𝑘 = 512 colors.
• The “vocabulary” is then the 512 palletized 

colors
• Which can be input as one-hot encoded
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https://openai.com/research/image-gpt
https://github.com/openai/image-gpt (deprecated)
https://huggingface.co/docs/transformers/model_doc/imagegpt  

M. Chen et al., “Generative Pretraining from Pixels,” OpenAI, Technical Report, 
Jun. 2020.

https://openai.com/research/image-gpt
https://github.com/openai/image-gpt
https://huggingface.co/docs/transformers/model_doc/imagegpt


Image GPT – Training Objectives

• Trained on large collection of 
unlabeled images.
• Tried training with either 

Autoregressive or BERT style training 
objective
• Predict the masked pixels
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https://openai.com/research/image-gpt
https://github.com/openai/image-gpt (deprecated)
https://huggingface.co/docs/transformers/model_doc/imagegpt  

M. Chen et al., “Generative Pretraining from Pixels,” OpenAI, Technical Report, 
Jun. 2020.

https://openai.com/research/image-gpt
https://github.com/openai/image-gpt
https://huggingface.co/docs/transformers/model_doc/imagegpt


Image GPT – Transformer Layer

• LayerNorm moved to precede Self-
Attention and Feed Forward block

• In the residual path
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Image GPT – Linear Probes

• Use pre-trained model as a “feature 
extractor”
• Activations after each layer è Features

• call ith feature: 𝑓$[𝑥]

• Good features should linearly separate 
the classes of transfer tasks
•è linear classifier trained on 𝑓! 𝑥 , 𝑌
• Do this with each feature layer and see 

which performs best

21

activation/feature

activation/feature

𝑓"[𝑥]

𝑓"[𝑥]

Multi-Head
Self-Attention

+

Feed Forward

+

Layer Norm

Layer Norm



Image GPT – Representation Quality

• Feature layer linear classifier trained for each dataset
• Classification representation quality by feature layer
• Best representation seems to lie in the middle
• As opposed to supervised-training where the best 

representations lie at the end fo the network
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Size Layers d # parms

iGPT-S 24 512 76M

iGPT-M 36 1024 455M

iGPT-L 48 1536 1.4B

iGPT-XL 60 3072 6.8B

iGTP-L
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Why is best representation in the middle as opposed to the end 
of the network like in supervised training?

ⓘ Start presenting to display the poll results on this slide.



Image-GPT – 

Perhaps generative model operates in two phases:

1. The first phase gathers information from surrounding context in 
order to build a more global representation.

2. In 2nd phase, contextualized input is used to solve conditional next 
pixel prediction task

24https://openai.com/research/image-gpt

https://openai.com/research/image-gpt


Image GPT – Finetuning for Classification

• Finetuning on the target dataset 
further improves accuracy
• Finetuning the entire model 

outperformed finetuning the 
best linear probe feature
• auto-regressive models produce 

much better features than BERT 
models after pre-training, 
• but BERT models catch up after 

fine-tuning.
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Linear Probing Fine Tuning

Comparison of auto-regressive pre-training with BERT pre-training using 
iGPT-L at an input resolution of 322 × 3.

Blue bars display linear probe accuracy and orange bars display finetune 
accuracy. 

Bold colors show the performance boost from ensembling BERT masks 
– use multiple BERT-style masking of each image then combine. 



Image GPT – AR Pixel Prediction Results
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Input Completions Original Input Completions Original

https://openai.com/research/image-gpt 

https://openai.com/research/image-gpt


Image GPT – Sampling the Distribution

27https://openai.com/research/image-gpt 

https://openai.com/research/image-gpt


Image GPT – Pros and Cons

Pro:
• Gave insights into the representational power of Transformers with 

unsupervised training

Con:
• Worked on downscaled images of size 32x32 to 64x64
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Vision Transformer (ViT) – June 2021
• Overcomes resolution limitation of ImageGPT by using patches
• Follows scalable NLP Transformer architectures to benefit from 

efficient implementations
• ImageNet Top-1 accuracy:  88.55%
• Performs poorly if just trained on ImageNet

• à can be expected since Transformers lack the inductive bias of CNNs

• Competitive when pre-trained on very large datasets (e.g. 14M – 
300M) images – all supervised  at this point
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https://arxiv.org/abs/2010.11929v2
https://github.com/google-research/vision_transformer 

Large scale training trumps inductive bias.

https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=4%2C17
https://arxiv.org/abs/2010.11929v2
https://github.com/google-research/vision_transformer


Vision Transformer (ViT) – June 2021

• Uses same Transformer layer as ImageGPT and 
scalable NLP Transformers
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https://arxiv.org/abs/2010.11929v2
https://github.com/google-research/vision_transformer 

https://arxiv.org/abs/2010.11929v2
https://github.com/google-research/vision_transformer


ViT: Putting it all together
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1. Divide image into 𝑃×𝑃 patches



ViT: Putting it all together
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1. Divide image into 𝑃×𝑃 patches
2. Create sequence of length 𝑁 = 𝐻𝑊/𝑃"



ViT: Putting it all together
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1. Divide image into 𝑃×𝑃 patches
2. Create sequence of length 𝑁 = 𝐻𝑊/𝑃"

3. Flatten the patches and map to 𝐷 dimensions with 
a trainable linear projection



ViT: Putting it all together
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1. Divide image into 𝑃×𝑃 patches
2. Create sequence of length 𝑁 = 𝐻𝑊/𝑃"

3. Flatten the patches and map to 𝐷 dimensions with 
a trainable linear projection

4. Add a learned 1-D position embedding 



ViT: Putting it all together
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1. Divide image into 𝑃×𝑃 patches
2. Create sequence of length 𝑁 = 𝐻𝑊/𝑃"

3. Flatten the patches and map to 𝐷 dimensions with 
a trainable linear projection

4. Add a learned 1-D position embedding
5. Include a learnable [class] embedding 



ViT: Putting it all together
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6. Then through a multi-layered 
Transformer encoder to a 

7. MLP classification head.



ViT Training Datasets & Model Variants
Dataset # Classes # Images

ILSVRC-2012 (ImageNet-1K) 1K 1.3M

ImageNet-21K 21K 14M

JFT 18K 303M
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Note: 16×16×3 = 768 

Same as BERT
Same as BERT
New for ViT

Notation: ViT-L/16 -- ”Large” variant with 16×16 input size.



ViT: Image Classification Results 
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Pre-Trained On

Notation: ViT-L/16 -- ”Large” variant with 16×16 input size.



ViT: Visualizing Internals
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Filters of the initial linear embedding of 
RGB values of ViT-L/32. Similarity of position 

embeddings of ViT-L/32. Tiles 
show the cosine similarity 
between the position 
embedding of the patch with 
the indicated row and column 
and the position embeddings of 
all other patches.

Size of attended area by head and 
network depth. Each dot shows 
the mean attention distance across 
images for one of 16 heads at one 
layer.



Scaling Vision Transformers (2022)
• Explore scaling up and down
• Achieves new state-of-the-art on ImageNet top-1: 90.45% with 2B 

parameter model

41

X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, “Scaling Vision Transformers,” presented at the Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 2022, pp. 12104–12113. Accessed: Mar. 18, 2024.

• Significantly scaled up model size and training data, leading to new state-of-the-art results. While the original ViT paper 
demonstrated the potential of Transformers for vision by training models up to the "Huge" variant (632M parameters), "Scaling Vision 
Transformers" successfully trained a two-billion parameter model (ViT-G/14), leveraging a much larger dataset (JFT-3B) and achieving 
substantially improved top-1 accuracy on ImageNet (90.45% vs. 88.55%).

• Enhanced few-shot transfer learning capabilities through improved training techniques. "Scaling Vision Transformers" discovered that 
applying very strong L2 regularization specifically to the final linear prediction layer significantly boosts few-shot performance. This 
resulted in a remarkable 84.86% top-1 accuracy on ImageNet with only 10 examples per class, a substantial improvement over the 
few-shot results presented in the original ViT paper.

• Improved memory efficiency and training methodologies to enable the scaling of larger models. "Scaling Vision Transformers" 
addressed memory limitations by exploring alternatives to the [class] token like Multihead Attention Pooling (MAP) and by utilizing 
memory-efficient optimizers like a modified AdaFactor. These modifications, along with other training recipe improvements, 
facilitated the training of much larger ViT models that were previously infeasible.
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CLIP (2021) – Contrastive Language Image Pretraining
• Learn directly from raw text about images
• Created a new 400m (image, text) pair dataset called WebImageText (WIT) 

scraped from the internet
• “Simple” pre-training task:

•  Predict which caption goes with which image from scratch on a dataset of 400 
million (image, text) pairs

• Efficient and scalable
• Learn state-of-the-art image representations from scratch

• Zero-shot transfer to many image classification datasets
• Shows promise for zero-shot transfer for other tasks: e.g. OCR, facial 

expression recognition, …
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A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision,” in 
Proceedings of the 38th International Conference on Machine Learning, PMLR, Jul. 2021, pp. 8748–8763.  
https://proceedings.mlr.press/v139/radford21a.html

https://proceedings.mlr.press/v139/radford21a.html


CLIP (2021) – Contrastive Language Image Pretraining
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Let’s go step by step



CLIP (2021) – Text Encoder

Embedding
• lower-cased byte pair encoding (BPE)
• bracketed with [SOS] and [EOS] tokens
Transformer
• 12-layer
• 512-wide
• 8 attention heads
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CLIP (2021) – Image Encoder

• Trained and compared 5 ResNets and 3 vision 
transformers
• ResNet50, ResNet101, RN50x4, x16, x64
• ViT-B/32, ViT-B/16 and ViT-L/14

• Best model: ViT-L/14@336px
• e.g. ViT-Large with 336×336 pixel resolution and 
14×14 patch resolution

• Found vision transformers ~3x more compute 
efficient than CLIP ResNets
• RN50x64 took 18 days to on 592 V100 GPUs
• ViT took 12 days on 256 V100 GPUs
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CLIP (2021) – Contrastive Language Image Pretraining
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• Input Shapes
• `I[n, h, w, c]` – A minibatch of images. Here, n is the batch size, h is 

the image height, w is the image width, and c is the number of color 
channels.

• `T[n, l]` – A minibatch of n texts. l is the sequence length for each 
text.

• Projection Matrices
• `W_i[d_i, d_e]` – A learned projection matrix that maps the image 

features (of dimension `d_i`) into a joint embedding space of 
dimension `d_e`.

• `W_t[d_t, d_e]` – A learned projection matrix that maps the text 
features (of dimension `d_t`) into the same joint embedding space.

•  Temperature Parameter
• `t` – A learned scalar that controls the sharpness of the softmax 

(through scaling the logits). Its exponential, `exp(t)`, is used to scale 
the cosine similarity scores.



CLIP (2021) – Feature Extraction
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• `I_f = image_encoder(I)`
The image encoder processes the input batch of images I and 
outputs feature representations I_f for each image. The output 
shape is [n, d_i], where each image is represented by a feature 
vector of dimension d_i.

• `T_f = text_encoder(T)`
The text encoder processes the input batch of texts T and outputs 
feature representations T_f for each text. The output shape is [n, 
d_t], where each text is represented by a feature vector of 
dimension d_t.



CLIP (2021) – Multimodal Embeddings
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• `I_e = l2_normalize(np.dot(I_f, W_i), axis=1)`
• The image features `I_f` are projected into the common embedding space using 

the matrix `W_i`. This is done via a dot product, converting each feature from 
dimension `d_i` to `d_e`.

• The resulting vectors are then L2-normalized (i.e., scaled to have unit length) along 
each row (`axis=1`). This normalization is key for cosine similarity computation.

• `T_e = l2_normalize(np.dot(T_f, W_t), axis=1)`
• Similarly, the text features `T_f` are projected into the joint embedding space using 

the matrix `W_t`.
• The projected text vectors are also L2-normalized along each row.

After this step, both `I_e` and `T_e` have the shape `[n, d_e]` and lie in the same embedding 
space, making them directly comparable.



CLIP (2021) – Pairwise Cosine Similarity
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np.dot(I_e, T_e.T)
• Since `I_e` and `T_e` are both L2-normalized, their dot product yields the cosine 

similarity between each image and each text.
• The resulting matrix has shape `[n, n]` where each element `(i, j)` represents the 

similarity between image `i` and text `j`.

*np.exp(t)
• The cosine similarities are then scaled by the factor `exp(t)`. The temperature 

parameter `t` controls the distribution of these similarity scores. A higher 
temperature (after exponentiation) makes the softmax distribution sharper, 
emphasizing the highest similarities.

Cosine Similarity:

cos 𝜃 =
(𝐴 ⋅ 𝐵)
𝐴 ×| 𝐵 |

= : 1,	for	𝜃 = 0°
0, for	𝜃 = 90°



CLIP (2021) – Contrastive Language Image Pretraining
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labels = np.arange(n)
• This creates an array of integers `[0, 1, 2, ..., n-1]` which serves as the ground-truth labels. It assumes that the i-th 

image corresponds to the i-th text (i.e., they are aligned).
loss_i = cross_entropy_loss(logits, labels, axis=0)
• This computes the cross-entropy loss using the logits, treating each image as a query against all texts. Here, the correct 

text for each image is given by labels. The loss is computed along the columns (`axis=0`).
loss_t = cross_entropy_loss(logits, labels, axis=1)
• Similarly, this computes the cross-entropy loss treating each text as a query against all images, with loss computed 

along the rows (`axis=1`).
loss = (loss_i + loss_t) / 2
• The final loss is the average of the two losses, making it symmetric. This symmetric loss ensures that both image-to-

text and text-to-image retrieval tasks are optimized simultaneously.



CLIP (2021) – Contrastive Loss

• Initially tried to train to predict 
caption of image (blue curve)
• bag-of-words encoding of same 

text is 3X more efficient 
(orange) curve
• Contrastive Objective improved 

another 4X (green curve)
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Contrastive Loss: Maximize cosine similarity 
measure between matching (image, text) pairs and 
simultaneously minimize similarity between non-
matching pairs



CLIP (2021) – Zero-Shot Image Classification
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CLIP (2021) – Zero-Shot Image Classification

• Evaluated across 27 datasets
• Compared to ResNet50 trained in 

supervised manner
• Beat ResNet50 on 16 of the 27
• Produced new SoTA on STL10 

(99.3%)
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CLIP (2021) – Compute Efficiency
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Scores are averaged over 12 datasets 
studied by Kornblith et al. (2019). 

Scores are averaged over 27 datasets that contain a wider 
variety of distributions. Dotted lines indicate models fine-
tuned or evaluated on images at a higher-resolution than pre-
training.



CLIP(2021) – Zero-Shot Classification Examples
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Thank You

57ChatGPT

Link

https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

