
Vision Transformers
DL4DS – Spring 2025

DS542 Gardos – Understanding Deep Learning, Other Content Cited 1

A survey in three papers.

https://udlbook.github.io/udlbook/

Reminders

• Mid-project check-in

2

Topics

• Transformers Recap
• ImageGPT
• Vision Transformer (ViT)
• CLIP – Contrastive Learning w/ Image Pre-Training

3

Transformers Recap

4

Transformer Layer -- Complete

5

Transform Layer

Calculated column-wise

LayerNorm

Encoder Pre-Training

• A small percentage of input embedding replaced with a generic <mask>
token
• Predict missing token from output embeddings
• Added linear layer and softmax to generate probabilities over vocabulary
• Trained on BooksCorpus (800M words) and English Wikipedia (2.5B words)

6

XT

Special <cls> token
used for aggregate
sequence
representation for
classification

Decoder: Text Generation (Generative AI)

7

Ignore

Pr
om

pt
G

en
er

at
ed Generated

• Feed the output back into input

Encoder Decoder Model

8

• The transformer layer in
the decoder of the
encoder-decoder model
has an extra stage
• Attends to the input of

the encoder with cross
attention using Keys and
Values from the output
of the encoder

Cross-Attention

9

Keys and Values come from the last stage of
the encoder

NLP Preprocessing Pipeline

10

Tokenizer Learned
Embeddings Transformer

Preprocessing: Tokenization and Embedding

Transformers don’t work on character string directly, but rather on vectors.

The character strings must be converted to vectors

<Some text string>

Learned Embeddings

• After the tokenizer, you have an updated ”vocabulary” indexed by token ID
• Next step is to translate the token into an embedding vector
• Translation is done via a linear layer which is typically learned with the rest of the

transformer model

• Special layer definition, likely to exploit sparsity of input

11

Tokenizer
Learned

Embeddings:
Linear Layer

Transformer
<Some text string>

self.embedding = nn.Embedding(vocab_size, embedding_dim)

Embeddings Output

”One hot encoding”

12

N 𝒱

In this example, we are
assuming a token is simply a
complete word

• Typical embedding size, D, is 1024
• Typical vocabulary size, 𝒱 , is 30,000
• So 30M parameters just for this matrix!

History of Transformers

1
3

Transformer
(2017)

Enc-
Dec

VideoBert
(2019)

Swin
(2021)

Enc

Image-
GPT

(2020)

DaViT
(2022)

Llama-2
(2023)

2017 2018 2019 2020 2021 2022 2023 2024

Dec

GPT-1
(2018)

GPT-2
(2019)

GPT-3
(2020)

GPT-3
(2023)

GPT-4
(2024)

Work in Progress

BERT
(2018)

Vit
(2020)

CLIP
(2021)

ImageNet History – Top-1 Error

14Based on Papers with Code

ImageNet Top-1 Accuracy

15
https://paperswithcode.com/sota/image-classification-on-imagenet

https://paperswithcode.com/sota/image-classification-on-imagenet

History of Transformers

1
6

Transformer
(2017)

Enc-
Dec

VideoBert
(2019)

Swin
(2021)

Enc

Image-
GPT

(2020)

DaViT
(2022)

Llama-2
(2023)

2017 2018 2019 2020 2021 2022 2023 2024

Dec

GPT-1
(2018)

GPT-2
(2019)

GPT-3
(2020)

GPT-3
(2023)

GPT-4
(2024)

Work in Progress

BERT
(2018)

Vit
(2020)

CLIP
(2021)

Image GPT – June 2020

• Train GPT-2 scale sequence Transformer to auto-regressively predict
pixels, w/o 2D input structure
• Use GPT-2 with only minor changes
• ImageNet Top-1 72% accuracy (not great), trained on ImageNet and

web images
• Primary objective is to explore the representation accuracy of internal

features

17

https://openai.com/research/image-gpt
https://github.com/openai/image-gpt (deprecated)
https://huggingface.co/docs/transformers/model_doc/imagegpt

M. Chen et al., “Generative Pretraining from Pixels,” OpenAI, Technical Report,
Jun. 2020.

https://openai.com/research/image-gpt
https://github.com/openai/image-gpt
https://huggingface.co/docs/transformers/model_doc/imagegpt

Image GPT – Inputs

• Reduced resolution to reduce context size:
 32×32, 48×48 or 64×64
• Also reduced color palette from 3×8 = 24 bit

(16M colors) to a 9-bit (512 colors) color palette
by clustering (R, G, B) pixels with 𝑘 = 512 colors.
• The “vocabulary” is then the 512 palletized

colors
• Which can be input as one-hot encoded

18

https://openai.com/research/image-gpt
https://github.com/openai/image-gpt (deprecated)
https://huggingface.co/docs/transformers/model_doc/imagegpt

M. Chen et al., “Generative Pretraining from Pixels,” OpenAI, Technical Report,
Jun. 2020.

https://openai.com/research/image-gpt
https://github.com/openai/image-gpt
https://huggingface.co/docs/transformers/model_doc/imagegpt

Image GPT – Training Objectives

• Trained on large collection of
unlabeled images.
• Tried training with either

Autoregressive or BERT style training
objective
• Predict the masked pixels

19

https://openai.com/research/image-gpt
https://github.com/openai/image-gpt (deprecated)
https://huggingface.co/docs/transformers/model_doc/imagegpt

M. Chen et al., “Generative Pretraining from Pixels,” OpenAI, Technical Report,
Jun. 2020.

https://openai.com/research/image-gpt
https://github.com/openai/image-gpt
https://huggingface.co/docs/transformers/model_doc/imagegpt

Image GPT – Transformer Layer

• LayerNorm moved to precede Self-
Attention and Feed Forward block

• In the residual path

20

activation/feature

Multi-Head
Self-Attention

+

Feed Forward

+

Layer Norm

Layer Norm

Multi-Head
Self-Attention

+

Layer Norm

Feed Forward

Layer Norm

+

activation/feature

Original
Transformer

ImageGPT
Transformer

Image GPT – Linear Probes

• Use pre-trained model as a “feature
extractor”
• Activations after each layer è Features

• call ith feature: 𝑓$[𝑥]

• Good features should linearly separate
the classes of transfer tasks
•è linear classifier trained on 𝑓! 𝑥 , 𝑌
• Do this with each feature layer and see

which performs best

21

activation/feature

activation/feature

𝑓"[𝑥]

𝑓"[𝑥]

Multi-Head
Self-Attention

+

Feed Forward

+

Layer Norm

Layer Norm

Image GPT – Representation Quality

• Feature layer linear classifier trained for each dataset
• Classification representation quality by feature layer
• Best representation seems to lie in the middle
• As opposed to supervised-training where the best

representations lie at the end fo the network

22

Size Layers d # parms

iGPT-S 24 512 76M

iGPT-M 36 1024 455M

iGPT-L 48 1536 1.4B

iGPT-XL 60 3072 6.8B

iGTP-L

23

Why is best representation in the middle as opposed to the end
of the network like in supervised training?

ⓘ Start presenting to display the poll results on this slide.

Image-GPT –

Perhaps generative model operates in two phases:

1. The first phase gathers information from surrounding context in
order to build a more global representation.

2. In 2nd phase, contextualized input is used to solve conditional next
pixel prediction task

24https://openai.com/research/image-gpt

https://openai.com/research/image-gpt

Image GPT – Finetuning for Classification

• Finetuning on the target dataset
further improves accuracy
• Finetuning the entire model

outperformed finetuning the
best linear probe feature
• auto-regressive models produce

much better features than BERT
models after pre-training,
• but BERT models catch up after

fine-tuning.

25

Linear Probing Fine Tuning

Comparison of auto-regressive pre-training with BERT pre-training using
iGPT-L at an input resolution of 322 × 3.

Blue bars display linear probe accuracy and orange bars display finetune
accuracy.

Bold colors show the performance boost from ensembling BERT masks
– use multiple BERT-style masking of each image then combine.

Image GPT – AR Pixel Prediction Results

26

Input Completions Original Input Completions Original

https://openai.com/research/image-gpt

https://openai.com/research/image-gpt

Image GPT – Sampling the Distribution

27https://openai.com/research/image-gpt

https://openai.com/research/image-gpt

Image GPT – Pros and Cons

Pro:
• Gave insights into the representational power of Transformers with

unsupervised training

Con:
• Worked on downscaled images of size 32x32 to 64x64

28

History of Transformers

2
9

Transformer
(2017)

Enc-
Dec

VideoBert
(2019)

Swin
(2021)

Enc

Image-
GPT

(2020)

DaViT
(2022)

Llama-2
(2023)

2017 2018 2019 2020 2021 2022 2023 2024

Dec

GPT-1
(2018)

GPT-2
(2019)

GPT-3
(2020)

GPT-3
(2023)

GPT-4
(2024)

Work in Progress

BERT
(2018)

Vit
(2020)

CLIP
(2021)

Vision Transformer (ViT) – June 2021
• Overcomes resolution limitation of ImageGPT by using patches
• Follows scalable NLP Transformer architectures to benefit from

efficient implementations
• ImageNet Top-1 accuracy: 88.55%
• Performs poorly if just trained on ImageNet

• à can be expected since Transformers lack the inductive bias of CNNs

• Competitive when pre-trained on very large datasets (e.g. 14M –
300M) images – all supervised at this point

30

https://arxiv.org/abs/2010.11929v2
https://github.com/google-research/vision_transformer

Large scale training trumps inductive bias.

https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=4%2C17
https://arxiv.org/abs/2010.11929v2
https://github.com/google-research/vision_transformer

Vision Transformer (ViT) – June 2021

• Uses same Transformer layer as ImageGPT and
scalable NLP Transformers

31

https://arxiv.org/abs/2010.11929v2
https://github.com/google-research/vision_transformer

https://arxiv.org/abs/2010.11929v2
https://github.com/google-research/vision_transformer

ViT: Putting it all together

32

1. Divide image into 𝑃×𝑃 patches

ViT: Putting it all together

33

1. Divide image into 𝑃×𝑃 patches
2. Create sequence of length 𝑁 = 𝐻𝑊/𝑃"

ViT: Putting it all together

34

1. Divide image into 𝑃×𝑃 patches
2. Create sequence of length 𝑁 = 𝐻𝑊/𝑃"

3. Flatten the patches and map to 𝐷 dimensions with
a trainable linear projection

ViT: Putting it all together

35

1. Divide image into 𝑃×𝑃 patches
2. Create sequence of length 𝑁 = 𝐻𝑊/𝑃"

3. Flatten the patches and map to 𝐷 dimensions with
a trainable linear projection

4. Add a learned 1-D position embedding

ViT: Putting it all together

36

1. Divide image into 𝑃×𝑃 patches
2. Create sequence of length 𝑁 = 𝐻𝑊/𝑃"

3. Flatten the patches and map to 𝐷 dimensions with
a trainable linear projection

4. Add a learned 1-D position embedding
5. Include a learnable [class] embedding

ViT: Putting it all together

37

6. Then through a multi-layered
Transformer encoder to a

7. MLP classification head.

ViT Training Datasets & Model Variants
Dataset # Classes # Images

ILSVRC-2012 (ImageNet-1K) 1K 1.3M

ImageNet-21K 21K 14M

JFT 18K 303M

38
Note: 16×16×3 = 768

Same as BERT
Same as BERT
New for ViT

Notation: ViT-L/16 -- ”Large” variant with 16×16 input size.

ViT: Image Classification Results

39

Pre-Trained On

Notation: ViT-L/16 -- ”Large” variant with 16×16 input size.

ViT: Visualizing Internals

40

Filters of the initial linear embedding of
RGB values of ViT-L/32. Similarity of position

embeddings of ViT-L/32. Tiles
show the cosine similarity
between the position
embedding of the patch with
the indicated row and column
and the position embeddings of
all other patches.

Size of attended area by head and
network depth. Each dot shows
the mean attention distance across
images for one of 16 heads at one
layer.

Scaling Vision Transformers (2022)
• Explore scaling up and down
• Achieves new state-of-the-art on ImageNet top-1: 90.45% with 2B

parameter model

41

X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, “Scaling Vision Transformers,” presented at the Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 12104–12113. Accessed: Mar. 18, 2024.

• Significantly scaled up model size and training data, leading to new state-of-the-art results. While the original ViT paper
demonstrated the potential of Transformers for vision by training models up to the "Huge" variant (632M parameters), "Scaling Vision
Transformers" successfully trained a two-billion parameter model (ViT-G/14), leveraging a much larger dataset (JFT-3B) and achieving
substantially improved top-1 accuracy on ImageNet (90.45% vs. 88.55%).

• Enhanced few-shot transfer learning capabilities through improved training techniques. "Scaling Vision Transformers" discovered that
applying very strong L2 regularization specifically to the final linear prediction layer significantly boosts few-shot performance. This
resulted in a remarkable 84.86% top-1 accuracy on ImageNet with only 10 examples per class, a substantial improvement over the
few-shot results presented in the original ViT paper.

• Improved memory efficiency and training methodologies to enable the scaling of larger models. "Scaling Vision Transformers"
addressed memory limitations by exploring alternatives to the [class] token like Multihead Attention Pooling (MAP) and by utilizing
memory-efficient optimizers like a modified AdaFactor. These modifications, along with other training recipe improvements,
facilitated the training of much larger ViT models that were previously infeasible.

History of Transformers

4
2

Transformer
(2017)

BERT
(2019)

Enc-
Dec

VideoBert
(2019)

CLIP
(2021)

ViT
(2020-1)

Swin
(2021)

Enc

Image-
GPT

(2020)

DaViT
(2022)

Llama-2
(2023)

2017 2018 2019 2020 2021 2022 2023 2024

Dec

GPT-1
(2018)

GPT-2
(2019)

GPT-3
(2020)

GPT-3
(2023)

GPT-4
(2024)

Work in Progress

CLIP (2021) – Contrastive Language Image Pretraining
• Learn directly from raw text about images
• Created a new 400m (image, text) pair dataset called WebImageText (WIT)

scraped from the internet
• “Simple” pre-training task:

• Predict which caption goes with which image from scratch on a dataset of 400
million (image, text) pairs

• Efficient and scalable
• Learn state-of-the-art image representations from scratch

• Zero-shot transfer to many image classification datasets
• Shows promise for zero-shot transfer for other tasks: e.g. OCR, facial

expression recognition, …

43

A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision,” in
Proceedings of the 38th International Conference on Machine Learning, PMLR, Jul. 2021, pp. 8748–8763.
https://proceedings.mlr.press/v139/radford21a.html

https://proceedings.mlr.press/v139/radford21a.html

CLIP (2021) – Contrastive Language Image Pretraining

44

Let’s go step by step

CLIP (2021) – Text Encoder

Embedding
• lower-cased byte pair encoding (BPE)
• bracketed with [SOS] and [EOS] tokens
Transformer
• 12-layer
• 512-wide
• 8 attention heads

45

CLIP (2021) – Image Encoder

• Trained and compared 5 ResNets and 3 vision
transformers
• ResNet50, ResNet101, RN50x4, x16, x64
• ViT-B/32, ViT-B/16 and ViT-L/14

• Best model: ViT-L/14@336px
• e.g. ViT-Large with 336×336 pixel resolution and
14×14 patch resolution

• Found vision transformers ~3x more compute
efficient than CLIP ResNets
• RN50x64 took 18 days to on 592 V100 GPUs
• ViT took 12 days on 256 V100 GPUs

46

CLIP (2021) – Contrastive Language Image Pretraining

47

• Input Shapes
• `I[n, h, w, c]` – A minibatch of images. Here, n is the batch size, h is

the image height, w is the image width, and c is the number of color
channels.

• `T[n, l]` – A minibatch of n texts. l is the sequence length for each
text.

• Projection Matrices
• `W_i[d_i, d_e]` – A learned projection matrix that maps the image

features (of dimension `d_i`) into a joint embedding space of
dimension `d_e`.

• `W_t[d_t, d_e]` – A learned projection matrix that maps the text
features (of dimension `d_t`) into the same joint embedding space.

• Temperature Parameter
• `t` – A learned scalar that controls the sharpness of the softmax

(through scaling the logits). Its exponential, `exp(t)`, is used to scale
the cosine similarity scores.

CLIP (2021) – Feature Extraction

48

• `I_f = image_encoder(I)`
The image encoder processes the input batch of images I and
outputs feature representations I_f for each image. The output
shape is [n, d_i], where each image is represented by a feature
vector of dimension d_i.

• `T_f = text_encoder(T)`
The text encoder processes the input batch of texts T and outputs
feature representations T_f for each text. The output shape is [n,
d_t], where each text is represented by a feature vector of
dimension d_t.

CLIP (2021) – Multimodal Embeddings

49

• `I_e = l2_normalize(np.dot(I_f, W_i), axis=1)`
• The image features `I_f` are projected into the common embedding space using

the matrix `W_i`. This is done via a dot product, converting each feature from
dimension `d_i` to `d_e`.

• The resulting vectors are then L2-normalized (i.e., scaled to have unit length) along
each row (`axis=1`). This normalization is key for cosine similarity computation.

• `T_e = l2_normalize(np.dot(T_f, W_t), axis=1)`
• Similarly, the text features `T_f` are projected into the joint embedding space using

the matrix `W_t`.
• The projected text vectors are also L2-normalized along each row.

After this step, both `I_e` and `T_e` have the shape `[n, d_e]` and lie in the same embedding
space, making them directly comparable.

CLIP (2021) – Pairwise Cosine Similarity

50

np.dot(I_e, T_e.T)
• Since `I_e` and `T_e` are both L2-normalized, their dot product yields the cosine

similarity between each image and each text.
• The resulting matrix has shape `[n, n]` where each element `(i, j)` represents the

similarity between image `i` and text `j`.

*np.exp(t)
• The cosine similarities are then scaled by the factor `exp(t)`. The temperature

parameter `t` controls the distribution of these similarity scores. A higher
temperature (after exponentiation) makes the softmax distribution sharper,
emphasizing the highest similarities.

Cosine Similarity:

cos 𝜃 =
(𝐴 ⋅ 𝐵)
𝐴 ×| 𝐵 |

= : 1,	for	𝜃 = 0°
0, for	𝜃 = 90°

CLIP (2021) – Contrastive Language Image Pretraining

51

labels = np.arange(n)
• This creates an array of integers `[0, 1, 2, ..., n-1]` which serves as the ground-truth labels. It assumes that the i-th

image corresponds to the i-th text (i.e., they are aligned).
loss_i = cross_entropy_loss(logits, labels, axis=0)
• This computes the cross-entropy loss using the logits, treating each image as a query against all texts. Here, the correct

text for each image is given by labels. The loss is computed along the columns (`axis=0`).
loss_t = cross_entropy_loss(logits, labels, axis=1)
• Similarly, this computes the cross-entropy loss treating each text as a query against all images, with loss computed

along the rows (`axis=1`).
loss = (loss_i + loss_t) / 2
• The final loss is the average of the two losses, making it symmetric. This symmetric loss ensures that both image-to-

text and text-to-image retrieval tasks are optimized simultaneously.

CLIP (2021) – Contrastive Loss

• Initially tried to train to predict
caption of image (blue curve)
• bag-of-words encoding of same

text is 3X more efficient
(orange) curve
• Contrastive Objective improved

another 4X (green curve)

52

Contrastive Loss: Maximize cosine similarity
measure between matching (image, text) pairs and
simultaneously minimize similarity between non-
matching pairs

CLIP (2021) – Zero-Shot Image Classification

53

CLIP (2021) – Zero-Shot Image Classification

• Evaluated across 27 datasets
• Compared to ResNet50 trained in

supervised manner
• Beat ResNet50 on 16 of the 27
• Produced new SoTA on STL10

(99.3%)

54

CLIP (2021) – Compute Efficiency

55

Scores are averaged over 12 datasets
studied by Kornblith et al. (2019).

Scores are averaged over 27 datasets that contain a wider
variety of distributions. Dotted lines indicate models fine-
tuned or evaluated on images at a higher-resolution than pre-
training.

CLIP(2021) – Zero-Shot Classification Examples

56

X

X

X

Thank You

57ChatGPT

Link

https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

