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A survey in three papers.
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Reminders

* Mid-project check-in



Topics

* Transformers Recap
* ImageGPT
* Vision Transformer (ViT)

* CLIP — Contrastive Learning w/ Image Pre-Training



Transformers Recap



Transformer Layer -- Complete

Transformer layer
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Encoder Pre-Training
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* A small percentage of input embedding replaced with a generic
token

* Predict missing token from output embeddings
* Added linear layer and softmax to generate probabilities over vocabulary
* Trained on BooksCorpus (800M words) and English Wikipedia (2.5B words)



Decoder: Text Generation (Generative Al)

Word Transformer with Linear + Probability of
embeddings masked attention softmax target token
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* Feed the output back into input



Encoder Decoder Model
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* The transformer layer in
the decoder of the
encoder-decoder model
has an extra stage

* Attends to the input of
the encoder with cross
attention using Keys and
Values from the output
of the encoder



Cross-Attention

Ny Ny Cross-attention
D D
Decoder Queries, Ll
_ o
Input, Xy Q=F5,1" + X4 N,
N, ’ Na
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Kc;ys, Output,
D K=03,1" + Q; X, V - Softmax [K”Q]
N,
Encoder
Input, X, Y
Values,

v=38,17 + Q,X.

I Keys and Values come from the last stage of
the encoder



NLP Preprocessing Pipeline

Transformers don’t work on character string directly, but rather on vectors.

The character strings must be converted to vectors

<Some text string>
Learned

Tokenizer Embeddings

|

Preprocessing: Tokenization and Embedding

Transformer

10



Learned Embeddings

<Some text string> Learned
Tokenizer Embeddings: Transformer

Linear Layer

CION S ———

» After the tokenizer, you have an updated “vocabulary” indexed by token ID
* Next step is to translate the token into an embedding vector

* Translation is done via a linear layer which is typically learned with the rest of the
transformer model

self.embedding = nn.Embedding(vocab_size, embedding_dim)

» Special layer definition, likely to exploit sparsity of input

11



Embeddings Output

In this example, we are
assuming a token is simply a

= % . = =5 ~  complete word
gm as g;cda@m m%gmgmg'
EREEE SEFSEFEBEERSREERE
Ll NN ENE
”"One hot encoding”
D =
Input, X Vocabulary embeddings, €2,

“an aardvark ate an ant”

* Typical embedding size, D, is 1024
» Typical vocabulary size, |V|, is 30,000 Token indices, T
* So 30M parameters just for this matrix! 12



History of Transformers Work ;.
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ImageNet History — Top-1 Error
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ImageNet Top-1 Accuracy
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Meta Pseudo Labels (EfficientNetI—LZ) .

OmniVec
—e

FixResNeXt-101 32/x;48d
AmoebaNet-A

SimpleNetV1-9m-coprect=labels

Res Netfl’?f/—

IireCaffe (GooglLeNet)

2016 2018 2020 2022

Other models -eo- State-of-the-art models

https://paperswithcode.com/sota/image-classification-on-imagenet

2024
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https://paperswithcode.com/sota/image-classification-on-imagenet

History of Transformers Work ;.
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Image GPT [GIIIUIN

* Train GPT-2 scale sequence Transformer to auto-regressively predict
pixels, w/o 2D input structure

* Use GPT-2 with only minor changes
* ImageNet Top-1 72% accuracy (not great), trained on ImageNet and

Image GPT —June 2020

web images
* Primary objective is to explore the representation accuracy of internal
features
https://openai.com/research/image-gpt M. Chen et al., “Generative Pretraining from Pixels,” OpenAl, Technical Report,
https://github.com/openai/image-gpt (deprecated) Jun. 2020.
17
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https://openai.com/research/image-gpt
https://github.com/openai/image-gpt
https://huggingface.co/docs/transformers/model_doc/imagegpt

Image GPT — Inputs & OpenAl

* Reduced resolution to reduce context size:

I g";r' 32%x32, 48X48 or 64X 64
;\&, * Also reduced color palette from 3X8 = 24 bit
’ (16M colors) to a 9-bit (512 colors) color palette
r by clustering (R, G, B) pixels with k = 512 colors.
* The “vocabulary” is then the 512 palletized
_¢ o colors

* Which can be input as one-hot encoded

https://openai.com/research/image-gpt M. Chen et al., “Generative Pretraining from Pixels,” OpenAl, Technical Report,
https://github.com/openai/image-gpt (deprecated) Jun. 2020.

https://huggingface.co/docs/transformers/model doc/imagegpt 18



https://openai.com/research/image-gpt
https://github.com/openai/image-gpt
https://huggingface.co/docs/transformers/model_doc/imagegpt

Image GPT — Training Objectives & openal

2 (a) Autoregressive (b) BERT
v v
000000000 000000000
T—————— w
o 0000 o 0000
TT————— T

* Trained on large collection of
unlabeled images.

00000000 00000000 * Tried training with either
i 0 ; E Autoregressive or BERT style training
Target Target O bj e Ct i Ve

* Predict the masked pixels

https://openai.com/research/image-gpt M. Chen et al., “Generative Pretraining from Pixels,” OpenAl, Technical Report,
https://github.com/openai/image-gpt (deprecated) Jun. 2020.

https://huggingface.co/docs/transformers/model doc/imagegpt 19



https://openai.com/research/image-gpt
https://github.com/openai/image-gpt
https://huggingface.co/docs/transformers/model_doc/imagegpt

Image GPT — Transformer Layer & openal

e LayerNorm moved to precede Self-
Attention and Feed Forward block

* In the residual path

—

Original ImageGPT
Transformer Transformer

20



Image GPT — Linear Probes & openal
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» Use pre-trained model as a “feature

extractor”
’ - s ® Activations after each layer =» Features
ZI(O.C.)OOCCOO _ * call jt" feature: f;[x]

A * Good features should linearly separate
000000000 the classes of transfer tasks
M * = linear classifier trained on (f;[x],Y)

Cat/\f)og * Do this with each feature layer and see

which performs best
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Image GPT — Representation Quality & openal

iGTP-L
100,
S 901
o
3
S 80
()]
Layers '8
s 701
iGPT-S 24 512 76M P —— CIFAR-10
c
: = 60] - CIFAR-100
iGPT-M 36 1024 455M p—— o 1
iGPT-L 48 1536 1.4B 20 0 10 20 30 40 50
layer
iGPT-XL 60 3072 6.8B

* Feature layer linear classifier trained for each dataset
* Classification representation quality by feature layer
* Best representation seems to lie in the middle

* As opposed to supervised-training where the best
representations lie at the end fo the network

22



slido

Why is best representation in the middle as opposed to the end
of the network like in supervised training?

@ Start presenting to display the poll results on this slide.



Image-GPT —
Perhaps generative model operates in two phases:

1. The first phase gathers information from surrounding context in
order to build a more global representation.

2. In 2" phase, contextualized input is used to solve conditional next
pixel prediction task

https://openai.com/research/image-gpt



https://openai.com/research/image-gpt

Image GPT — Finetuning for Classification

CIFAR10
BERT | ] | * Finetuning on the target dataset
- further improves accuracy
T * Finetuning the entire model
o outperformed finetuning the
geNet .
sext [ O best linear probe feature
" ] e auto-regressive models produce
% % %8 6 @ 6 6 6 much better features than BERT
Linear Probing accuracy Fine Tuning

models after pre-training,

Comparison of auto-regressive pre-training with BERT pre-training using °

iGPT-L at an input resolution of 322 x 3. b Ut B E RT m Od e I S CatCh u p afte r
Blue bars display linear probe accuracy and orange bars|display finetune fl n e_t uni ng'

accuracy.

Bold colors show the performance boost from ensembling BERT masks

— use multiple BERT-style masking of each image then combine. 75



Image GPT — AR Pixel Prediction Results
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https://openai.com/research/image-gpt

Image GPT — Sampling the Distribution

https://openai.com/research/image-gpt

27


https://openai.com/research/image-gpt

Image GPT — Pros and Cons

Pro:

e Gave insights into the representational power of Transformers with
unsupervised training

Con:
* Worked on downscaled images of size 32x32 to 64x64
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Vision Transformer (ViT) —June 2021

e Overcomes resolution limitation of ImageGPT by using patches

* Follows scalable NLP Transformer architectures to benefit from
efficient implementations

* ImageNet Top-1 accuracy: 88.55%

* Performs poorly if just trained on ImageNet
* - can be expected since Transformers lack the inductive bias of CNNs

 Competitive when pre-trained on very large datasets (e.g. 14M —
300M) images — all supervised at this point

[ Large scale training trumps inductive bias. ]

https://arxiv.org/abs/2010.11929v?2
https://github.com/google-research/vision transformer

30


https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=4%2C17
https://arxiv.org/abs/2010.11929v2
https://github.com/google-research/vision_transformer

Vision Transformer (ViT) —June 2021

Transformer Encoder

* Uses same Transformer layer as ImageGPT and
scalable NLP Transformers

Multi-Head
Attention

Embedded
Patches

https://arxiv.org/abs/2010.11929v?2
https://github.com/google-research/vision transformer

31


https://arxiv.org/abs/2010.11929v2
https://github.com/google-research/vision_transformer

VIiT: Putting it all together

1. Divide image into PXP patches

32



ViT: Putting it all together

2. Create sequence of length N = HW /P*

33



ViT: Putting it all together

3. Flatten the patches and map to D dimensions with
a trainable linear projection

[ Linear Projection of Flattened Patches
I I

2y B R T T i

AT |
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ViT: Putting it all together

4. Add alearned 1-D position embedding

Rk i @1”@@@1@@

Lmear PrOJectlon of Flattened Patches

ST . [T T T 1]
%—»lmm@wa'
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ViT: Putting it all together

5. Include a learnable [class] embedding

Patch + Position
) @) 6) @) 6060 &
* Extra learnable
class] embedding Lmear PrOJectlon of Flattened Patches

SEE | [T T T 1]
%—»lmm@wa'
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VIiT: Putting it all together

Vision Transformer (ViT)

6. Then through a multi-layered
Transformer encoder to a

MLP
Head 7. MLP classification head.

Transformer Encoder

|
- o o) 000) oo o] o) 0

* Extra learnable
[ Lmear PrOJectlon of Flattened Patches

[class] embedding
ST | T 1 T T |
mmn—»llm’ T T A R
AL jas
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VIiT Training Datasets & Model Variants

ILSVRC-2012 (ImageNet-1K) 1K 1.3M

ImageNet-21K 21K 14M

JFT 18K 303M
Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M  Same as BERT
ViT-Large 24 1024 4096 16 307M  Same as BERT
ViT-Huge 32 1280 5120 16 632M  New for ViT

Notation: ViT-L/16 -- “Large” variant with 16X 16 input size.

Note: 16X16x3 = 768 .



ViT: Image Classification Results

Pre-Trained On

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student
(ViT-H/14) (ViT-L/16)  (ViT-L/16) (ResNet152x4) (EfficientNet-L2)

ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54 +0.02 88.4/88.5*
ImageNet Real. 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04  93.90+0.05 93.25+0.05 93.51 +0.08 —
Oxford-IIIT Pets 97.56 +0.03 97.32+0.11  94.67+0.15 96.62 +0.23 —
Oxford Flowers-102  99.68 +0.02 99.74+0.00 99.61 +0.02 99.63 +0.03 —
VTAB (19 tasks) T7T7.63+023 76.284+046 72.72+0.21 76.29 +1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Model Layers Hiddensize D MLPsize Heads Params

ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M

ViT-Huge 32 1280 5120 16 632M

Notation: ViT-L/16 -- “Large” variant with 16X 16 input size.

39



ViT: Visualizing Internals

RGB embedding filters
(first 28 principal components)

Position embedding similarity ViT-L/16

NN NER g1 s I
;2....-‘. . 31004 "'0-:"' .
N T T T T B
LammnEER] C
ammnmmm) i f.0h e
6-.--... g 20-:::' *  Head 3
A L L L L 1 1 J S
1k 2 3 4 5 6 7 0 5 10 15 20
Filters of the initial linear embedding of il Networkept(iayen
RGB values of ViT-L/32. Similarity of position Size of attended area by head and
embeddings of ViT-L/32. Tiles network depth. Each dot shows
show the cosine similarity the mean attention distance across
between the position images for one of 16 heads at one
embedding of the patch with layer.

the indicated row and column
and the position embeddings of

all other patches.
40



Scaling Vision Transformers (2022)

e Explore scaling up and down

* Achieves new state-of-the-art on ImageNet top-1: 90.45% with 2B
parameter model

* Significantly scaled up model size and training data, leading to new state-of-the-art results. While the original ViT paper
demonstrated the potential of Transformers for vision by training models up to the "Huge" variant (632M parameters), "Scaling Vision
Transformers" successfully trained a two-billion parameter model (ViT-G/14), leveraging a much larger dataset (JFT-3B) and achieving
substantially improved top-1 accuracy on ImageNet (90.45% vs. 88.55%).

* Enhanced few-shot transfer learning capabilities through improved training techniques. "Scaling Vision Transformers" discovered that
applying very strong L2 regularization specifically to the final linear prediction layer significantly boosts few-shot performance. This
resulted in a remarkable 84.86% top-1 accuracy on ImageNet with only 10 examples per class, a substantial improvement over the
few-shot results presented in the original ViT paper.

* Improved memory efficiency and training methodologies to enable the scaling of larger models. "Scaling Vision Transformers"
addressed memory limitations by exploring alternatives to the [class] token like Multihead Attention Pooling (MAP) and by utilizing
memory-efficient optimizers like a modified AdaFactor. These modifications, along with other training recipe improvements,
facilitated the training of much larger ViT models that were previously infeasible.

X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, “Scaling Vision Transformers,” presented at the Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 12104-12113. Accessed: Mar. 18, 2024.



History of Transformers Wor,
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CLIP (2021) — Contrastive Language Image Pretraining

e Learn directly from raw text about images

* Created a new 400m (image, text) pair dataset called WeblmageText (WIT)
scraped from the internet

e “Simple” pre-training task:
* Predict which caption goes with which image from scratch on a dataset of 400
million (image, text) pairs
* Efficient and scalable
* Learn state-of-the-art image representations from scratch

» Zero-shot transfer to many image classification datasets

* Shows promise for zero-shot transfer for other tasks: e.g. OCR, facial
expression recognition, ...

A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision,” in
Proceedings of the 38th International Conference on Machine Learning, PMLR, Jul. 2021, pp. 8748-8763.
https://proceedings.mlr.press/v139/radford21a.html



https://proceedings.mlr.press/v139/radford21a.html

CLIP (2021) — Contrastive Language Image Pretraining

(1) Contrastive pre-training

Pepper the

: Text
aussle pup Encoder
g' i Image
"?@W 4 lI Encoder
5. i ‘

'_

J
L—

(2) Create dataset classifier from label text

|y

- q

. A photo of

T, T, T

TN

P

I ‘ m 1T, { I,'Ts |
"

13Ty | 13Ty | 13Ty

I3 Ty

IN INTy | INTy | INT3

In'Ty

I ST\te)@e fbe¥8h§ ;LECP

Image
Encoder

Text
Encoder
T T, T3 Tn
L LTy | LTy | T3 | [T
A photo of

a dog.

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the

target dataset’s classes.
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CLIP (2021) — Text Encoder

eeeeeeeee

Embedding
% * lower-cased byte pair encoding (BPE)
* bracketed with [SOS] and [EOS] tokens
Transformer
e 12-layer
* 512-wide
8 attention heads



CLIP (2021) — Image Encoder

* Trained and compared 5 ResNets and 3 vision
transformers
* ResNet50, ResNetl101, RN50x4, x16, x64
* ViT-B/32, ViT-B/16 and ViT-L/14
* Best model: ViT-L/14@336px
g e e.g. ViT-Large with 336X336 pixel resolution and
1414 patch resolution
* Found vision transformers ~3x more compute
efficient than CLIP ResNets

 RN50x64 took 18 days to on 592 V100 GPUs
* ViT took 12 days on 256 V100 GPUs




CLIP (2021) — Contrastive Language Image Pretraining

(1) Contrastive pre-training

Pepper the Text
aussie pup Encoder l i i l
T, T, T3 Tn
—> I LTy | Ty | T3 TN
SR LTy | Ty | T3 12T
Image
L > 1 LT | T, | 3T T
Encoder ’ B I .
> Iy INTy | INTy | INT; TN

image_encoder ResNet or Vision Transformer
text_encoder CBOW or Text Transformer
I[n, h, w, c] minibatch of aligned images
Fin; &l minibatch of aligned texts
W_i[d_i, d_e] learned proj of image to embed
W_t[d_t, d_e] learned proj of text to embed
t learned temperature parameter
Input Shapes

e I[n, h, w, c]" — A minibatch of images. Here, n is the batch size, h is
the image height, w is the image width, and c is the number of color
channels.

e “T[n, I]' = A minibatch of n texts. | is the sequence length for each
text.

Projection Matrices

e "W_i[d_i, d_e]’ —Alearned projection matrix that maps the image
features (of dimension *d_i’) into a joint embedding space of
dimension ‘d_e".

e "W_t[d_t, d_e] — A learned projection matrix that maps the text
features (of dimension *d_t") into the same joint embedding space.

Temperature Parameter

* 't'—Alearned scalar that controls the sharpness of the softmax
(through scaling the logits). Its exponential, “exp(t)’, is used to scale
the cosine similarity scores.
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CLIP (2021) — Feature Extraction

(1) Contrastive pre-training

Pepper the
aussie pup

Text

’y

D

!

|

|

ﬁ

T T, T N

—>» I LTy | Ty | II'Ts I' T
> L LT | LT | Iy Iy Ty
» I LTy | I3Ty | 13T I3 Ty
Lyl Iy | | INTy | InT, | InTs NG

3+ 3%

EYE T T TS

$*

=] b= 3

image_encoder - ResNet or Vision Transformer

text_encoder - CBOW or Text Transformer

I[n, h, w, ¢] - minibatch of aligned images

LLn: &1 - minibatch of aligned texts
W_i[d_i, d_e] - learned proj of image to embed
W_t[d_t, d_e] learned proj of text to embed

t - learned temperature parameter
extract feature representations of each modality
_f = image_encoder(I) #[n, d_i]
_f = text_encoder(T) #[n, d_t]

« I f = image_encoder(I)"

The image encoder processes the input batch of images | and
outputs feature representations |_f for each image. The output
shape is [n, d_i], where each image is represented by a feature
vector of dimension d_i.

T f = text _encoder(T)"

The text encoder processes the input batch of texts T and outputs
feature representations T_f for each text. The output shape is [n,
d_t], where each text is represented by a feature vector of
dimension d_t.
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CLIP (2021) — Multimodal Embeddings

3+

(1) Contrastive pre-training image_encoder ResNet or Vision Transformer

# text_encoder CBOW or Text Transformer
# I[n, h, w, c] minibatch of aligned images
# TIn, 1} - minibatch of aligned texts

Pepper the Toxt # W_i[d_i, d_e] - learned proj of image to embed

aussie pup 7| Encoder i i i N i # W_t[d_t, d_el learned proj of text to embed
#t learned temperature parameter

T L, | T3 TN
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
> b LT | T | Ty | Ty T_f = text_encoder(T) #[n, d_t]
\\\\\\\\1 —> b LT | LT | LTy | . LTy # joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
Image > I3 Ty | I3T, | I3Ts I3 Ty T_e

Encoder - = 12_normalize(np.dot(T_f, W_t), axis=1)
A E : ; E E : * ’l_e=12_normalize(np.dot(l_f, W_i), axis=1)"

* The image features 'I_f" are projected into the common embedding space using
the matrix "W_i". This is done via a dot product, converting each feature from
dimension ‘d_i" to 'd_e".

* The resulting vectors are then L2-normalized (i.e., scaled to have unit length) along
each row (‘axis=1"). This normalization is key for cosine similarity computation.

e 'T_e=12_normalize(np.dot(T_f, W_t), axis=1)

* Similarly, the text features ‘T_f" are projected into the joint embedding space using
the matrix "W_t".

* The projected text vectors are also L2-normalized along each row.

INT | INTy | INTs | | InTy

v

After this step, both ‘I_e" and "T_e" have the shape ‘[n, d_e] and lie in the same embedding
space, making them directly comparable.




CLIP (2021) — Pairwise Cosine Similarity

(1) Contrastive pre-training

3+

3F

H 3 3 3% 3

$*

# e
Lf
T:f

— H 3

Pepper the Text
aussie pup Encoder l l l l
T, T, T3 Tn
—» I LTy | Ty | 10T TN
\‘ 1 LT | Ty | 1Ty I Ty
Image > I LTy | 3Ty | 13T BT
y I= . .
> Iy INTy | INTy | INT3 Ty
Cosine Similarity:
. — Nno
(A-B) 1,for8 =0

cos(f) =

m_ 0,for 8 = 90°

image_encoder ResNet or Vision Transformer
text_encoder CBOW or Text Transformer

I[n, h, w, c] minibatch of aligned images
Tln; <14 - minibatch of aligned texts
W_i[d_i, d_e] - learned proj of image to embed
W_t[d_t, d_e] learned proj of text to embed
t learned temperature parameter

xtract feature representations of each modality
image_encoder(I) #[n, d_i]
text_encoder(T) #[n, d_t]

oint multimodal embedding [n, d_e]

]
_e = 12_normalize(np.dot(I_f, W_i), axis=1)
_e

12_normalize(np.dot(T_f, W_t), axis=1)

scaled pairwise cosine similarities [n, n]

logits = np.dot(I_e, T_e.T) * np.exp(t)

.dot(I_e, T_e.T)

Since "I_e" and ‘T_e" are both L2-normalized, their dot product yields the cosine
similarity between each image and each text.

The resulting matrix has shape “[n, n]" where each element (i, j)* represents the
similarity between image "i° and text 'j .

*np.exp(t)
* The cosine similarities are then scaled by the factor “exp(t)’. The temperature

parameter 't controls the distribution of these similarity scores. A higher
temperature (after exponentiation) makes the softmax distribution sharper,
emphasizing the highest similarities.




CLIP (2021) — Contrastive Language Image Pretraining

(1) Contrastive pre-training

avoois pup > e l l l l
» T, T, T3 TN

N LTy | T, | LT3 | . LTy

ﬁ L 1 LT [LT | LT | . |LTy

ﬁ > I T | LT | BTy | . | I3Ty

> Iy INTy | INTy | INT3 | [INTN

labels = np.arange(n)

* This creates an array of integers [0, 1, 2, ..., n-1]" which serves as the ground-truth labels. It assumes that the i-th
image corresponds to the i-th text (i.e., they are aligned).

loss_i = cross_entropy_loss(logits, labels, axis=0)

* This computes the cross-entropy loss using the logits, treating each image as a query against all texts. Here, the correct
text for each image is given by labels. The loss is computed along the columns (“axis=0").

loss_t = cross_entropy_loss(logits, labels, axis=1)

« Similarly, this computes the cross-entropy loss treating each text as a query against all images, with loss computed
along the rows (“axis=1").

loss = (loss_i + loss_t) / 2

* The final loss is the average of the two losses, making it symmetric. This symmetric loss ensures that both image-to-
text and text-to-image retrieval tasks are optimized simultaneously.

# image_encoder - ResNet or Vision Transformer

# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# TIn, i1} minibatch of aligned texts

# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed

£ S
-+

# e
I_f
Tof

- learned temperature parameter

xtract feature representations of each modality

image_encoder(I) #[n, d_i]
text_encoder(T) #[n, d_t]

oint multimodal embedding [n, d_e]

i)
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_

normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]

logits

np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels
loss_i
loss_t
loss

np.arange(n)

cross_entropy_loss(logits, labels, axis=8)
cross_entropy_loss(logits, labels, axis=1)
(loss_i + loss_t)/2
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CLIP (2021) — Contrastive Loss

40 A

* Initially tried to train to predict
caption of image (blue curve)

w
w
'

w
o
'

* bag-of-words encoding of same
text is 3X more efficient
curve

N
w
1

N
o
1

4x efficiency < 3X efficiency

=
w
s

e Contrastive Objective improved
another 4X (green curve)

Zero-Shot ImageNet Accuracy

[
o
Il

-&— Bag of Words Contrastive (CLIP)
Bag of Words Prediction
-&— Transformer Language Model

w
1

0

Contrastive Loss: Maximize cosine similarity oM 33M 67M 134M 268M 400M
measure between matching (image, text) pairs and # of images processed

simultaneously minimize similarity between non-

matching pairs
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CLIP (2021) — Zero-Shot Image Classification

(1) Contrastive pre-training

Pepper the
aussie pup

Text

’ﬁ

!

|

|

T, T, T N

—>» h LTy | LTy | LT SRAN

\‘ > b LT | T | T RN
Image > 1 LT | T, | T LT,
y > I 3Ty | 3Ty | 3Ts 3TN
Lyl Iy INTy | InTy | IyTs NG

(2) Create dataset classifier from label text

A photo of
a {object}.

(3) Use for zero-shot prediction

Image
Encoder

Text
Encoder

a dog.

T, T, T3 TN
L LTy | Ty | 1T I' Ty
A photo of
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CLIP (2021) — Zero-Shot Image Classification

StanfordCars +28.9
Country211 +23.2
Food101 +22.5

Kinetics700

SST2

SUN397

UCF101

HatefulMemes

STL10 [@+3.0
FER2013 §|+2.8
Caltech101 [§+2.0
ImageNet Ji§j+1.9
OxfordPets J|+1.1
PascalvOC2007 J+0.5
-3. Birdsnap
MNIST
FGVCAircraft
RESISC45
Flowers102
DTD
CLEVRCounts
GTSRB
PatchCamelyon
KITTI Distance
EuroSIAT . i i
-40 -30 -20 -10 O 10 20 30 40

A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50

Figure 4. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet50 features on 16 datasets, including ImageNet.

e Evaluated across 27 datasets

* Compared to ResNet50 trained in
supervised manner

 Beat ResNet50 on 16 of the 27

* Produced new SoTA on STL10
(99.3%)
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CLIP (2021) — Compute Efficiency

Linear probe average over Kornblith et al.'s 12 datasets Linear probe average over all 27 datasets
90+ L/14@336px L/14@336px
/14, ..k 851

Average Score (%)

Average Score (%)
(=]
o

~
w

R152x4

70 1

10° 10!
Forward-pass GFLOPs/image

~— CLIP-ViT
—5/# CLIP-ResNet

—#— EfficientNet-NoisyStudent

—— EfficientNet

10?2

10° 10! 102
Forward-pass GFLOPs/image

Instagram-pretrained —2— VIiT (ImageNet-21k)

+— SimCLRv2 —&— BiT-M
BYOL —»— BIT-S
—e— MoCo ResNet

Scores are averaged over 12 datasets

studied by Kornblith et al. (2019).

Scores are averaged over 27 datasets that contain a wider
variety of distributions. Dotted lines indicate models fine-

tuned or evaluated on images at a higher-resolution than pre-
training.
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Food101
guacamole (90.1%) Ranked 1out of 101 labels

v aphoto of guacamole, a type of food.

-
x a photo of ceviche, a type of food.

=
X a photo of edamame, a type of food

L}
X a photo of tuna tartare, a type of food.

'
X a photo of hummus, a type of food.

Youtube-BB
airplane, person (89.0%) Ranked 1out of 23 labels

v aphoto of aairplane.

-
% a photo of a bird.

=
X a photo of a bear.

=
X a photo of a giraffe.

X aphoto of acar.

PatchCamelyon (PCam)
healthy lymph node tissue (77.2%) Ranked 2 out of 2 labels

[ ]
_f L x this is a photo of lymph node tumor tissue

I
v this is a photo of healthy lymph node tissue

CLIP(2021) — Zero-Shot Classification Examples

SUN397

television studio (90.2%) Ranked 1out of 397 labels

EuroSAT

v aphoto of a television studio.

L)
X a photo of a podium indoor.

=
X a photo of a conference room. V

L}
X a photo of a lecture room.

'
X a photo of a control room.

annual crop land (46.5%) Ranked 4 out of 10 labels

ImageNet-A (Adversarial)

_—
X a centered satellite photo of permanent crop land.

E—
X a centered satellite photo of pasture land.

—
X a centered satellite photo of highway or road.

—
v acentered satellite photo of annual crop land.

—
X acentered satellite photo of brushland or shrubland.

lynx (47.9%) Ranked 5 out of 200 labels

—_——
% a photo of a fox squirrel.

—
X a photo of a mongoose.

—
X a photo of a skunk.

—
X a photo of a red fox.

-
+ aphoto of alynx.
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https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

